Ergodic Theoretic Methods in Group Homology
ebook ∣ A Minicourse on L2-Betti Numbers in Group Theory · SpringerBriefs in Mathematics
By Clara Löh
Sign up to save your library
With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.
Find this title in Libby, the library reading app by OverDrive.

Search for a digital library with this title
Title found at these libraries:
Library Name | Distance |
---|---|
Loading... |
Group homology integrates group actions into homological structure. Coefficients based on probability measure preserving actions combine ergodic theory and homology. An example of such an interaction is provided by L2-Betti numbers: these invariants can be understood in terms of group homology with coefficients related to the group von Neumann algebra, via approximation by finite index subgroups, or via dynamical systems. In this way, L2-Betti numbers lead to orbit/measure equivalence invariants and measured group theory helps to compute L2-Betti numbers. Similar methods apply also to compute the rank gradient/cost of groups as well as the simplicial volume of manifolds.
This book introduces L2-Betti numbers of groups at an elementary level and thendevelops the ergodic point of view, emphasising the connection with approximation phenomena for homological gradient invariants of groups and spaces. The text is an extended version of the lecture notes for a minicourse at the MSRI summer graduate school "Random and arithmetic structures in topology" and thus accessible to the graduate or advanced undergraduate students. Many examples and exercises illustrate the material.