Representation Theory of Finite Group Extensions
ebook ∣ Clifford Theory, Mackey Obstruction, and the Orbit Method · Springer Monographs in Mathematics
By Tullio Ceccherini-Silberstein
Sign up to save your library
With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.
Find this title in Libby, the library reading app by OverDrive.

Search for a digital library with this title
Title found at these libraries:
Library Name | Distance |
---|---|
Loading... |
The main topics are, on the one hand, Clifford Theory and the Little Group Method (of Mackey and Wigner) for induced representations, and, on the other hand, Kirillov's Orbit Method (for step-2 nilpotent groups of odd order) which establishes a natural and powerful correspondence between Lie rings and nilpotent groups. As an application, a detailed description is given of the representation theory of the alternating groups, of metacyclic, quaternionic, dihedral groups, and of the (finite) Heisenberg group.
TheLittle Group Method may be applied if and only if a suitable unitary 2-cocycle (the Mackey obstruction) is trivial. To overcome this obstacle, (unitary) projective representations are introduced and corresponding Mackey and Clifford theories are developed. The commutant of an induced representation and the relative Hecke algebra is also examined. Finally, there is a comprehensive exposition of the theory of projective representations for finite Abelian groups which is applied to obtain a complete description of the irreducible representations of finite metabelian groups of odd order.