Design and Analysis of Experiments and Observational Studies using R

ebook Chapman & Hall/CRC Texts in Statistical Science

By Nathan Taback

cover image of Design and Analysis of Experiments and Observational Studies using R

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...

Introduction to Design and Analysis of Scientific Studies exposes undergraduate and graduate students to the foundations of classical experimental design and observational studies through a modern framework - The Rubin Causal Model. A causal inference framework is important in design, data collection and analysis since it provides a framework for investigators to readily evaluate study limitations and draw appropriate conclusions. R is used to implement designs and analyse the data collected.

Features:

  • Classical experimental design with an emphasis on computation using tidyverse packages in R.
  • Applications of experimental design to clinical trials, A/B testing, and other modern examples.
  • Discussion of the link between classical experimental design and causal inference.
  • The role of randomization in experimental design and sampling in the big data era.
  • Exercises with solutions.
  • Instructor slides in RMarkdown, a new R package will be developed to be used with book, and a bookdown version of the book will be freely available. The proposed book will emphasize ethics, communication and decision making as part of design, data analysis, and statistical thinking.

    Design and Analysis of Experiments and Observational Studies using R