Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration

ebook SpringerBriefs in Mathematics

By Alfonso Zamora Saiz

cover image of Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
This book introduces key topics on Geometric Invariant Theory, a technique to obtaining quotients in algebraic geometry with a good set of properties, through various examples. It starts from the classical Hilbert classification of binary forms, advancing to the construction of the moduli space of semistable holomorphic vector bundles, and to Hitchin's theory on Higgs bundles. The relationship between the notion of stability between algebraic, differential and symplectic geometry settings is also covered.
Unstable objects in moduli problems — a result of the construction of moduli spaces — get specific attention in this work. The notion of the Harder-Narasimhan filtration as a tool to handle them, and its relationship with GIT quotients, provide instigating new calculations in several problems. Applications include a survey of research results on correspondences between Harder-Narasimhan filtrations with the GIT picture and stratifications of the moduli space of Higgs bundles.
Graduate students and researchers who want to approach Geometric Invariant Theory in moduli constructions can greatly benefit from this reading,  whose key prerequisites are general courses on algebraic geometry and differential geometry.
Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration