The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles

ebook Oxford Lecture Series in Mathematics and Its Applications

By E. J. Janse van Rensburg

cover image of The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
The self-avoiding walk is a classical model in statistical mechanics, probability theory and mathematical physics. It is also a simple model of polymer entropy which is useful in modelling phase behaviour in polymers. This monograph provides an authoritative examination of interacting self-avoiding walks, presenting aspects of the thermodynamic limit, phase behaviour, scaling and critical exponents for lattice polygons, lattice animals and surfaces. It also includes a comprehensive account of constructive methods in models of adsorbing, collapsing, and pulled walks, animals and networks, and for models of walks in confined geometries. Additional topics include scaling, knotting in lattice polygons, generating function methods for directed models of walks and polygons, and an introduction to the Edwards model. This essential second edition includes recent breakthroughs in the field, as well as maintaining the older but still relevant topics. New chapters include an expanded presentation of directed models, an exploration of methods and results for the hexagonal lattice, and a chapter devoted to the Monte Carlo methods.
The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles