Information Theory and Artificial Intelligence to Manage Uncertainty in Hydrodynamic and Hydrological Models

ebook

By Abebe Andualem Jemberie

cover image of Information Theory and Artificial Intelligence to Manage Uncertainty in Hydrodynamic and Hydrological Models

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
The complementary nature of physically-based and data-driven models in their demand for physical insight and historical data, leads to the notion that the predictions of a physically-based model can be improved and the associated uncertainty can be systematically reduced through the conjunctive use of a data-driven model of the residuals. The objective of this thesis is to minimise the inevitable mismatch between physically-based models and the actual processes as described by the mismatch between predictions and observations. The complementary modelling approach is applied to various hydrodynamic and hydrological models.
Information Theory and Artificial Intelligence to Manage Uncertainty in Hydrodynamic and Hydrological Models