Applied Compositional Data Analysis

ebook With Worked Examples in R · Springer Series in Statistics

By Peter Filzmoser

cover image of Applied Compositional Data Analysis

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Loading...
This book presents the statistical analysis of compositional data using the log-ratio approach. It includes a wide range of classical and robust statistical methods adapted for compositional data analysis, such as supervised and unsupervised methods like PCA, correlation analysis, classification and regression. In addition, it considers special data structures like high-dimensional compositions and compositional tables. The methodology introduced is also frequently compared to methods which ignore the specific nature of compositional data. It focuses on practical aspects of compositional data analysis rather than on detailed theoretical derivations, thus issues like graphical visualization and preprocessing (treatment of missing values, zeros, outliers and similar artifacts) form an important part of the book. Since it is primarily intended for researchers and students from applied fields like geochemistry, chemometrics, biology and natural sciences, economics, and social sciences, all the proposed methods are accompanied by worked-out examples in R using the package robCompositions.
Applied Compositional Data Analysis