Introduction to Classifier Performance Analysis with R
ebook ∣ Chapman & Hall/CRC Data Science Series
By Sutaip L.C. Saw
Sign up to save your library
With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.
Find this title in Libby, the library reading app by OverDrive.

Search for a digital library with this title
Title found at these libraries:
Library Name | Distance |
---|---|
Loading... |
Classification problems are common in business, medicine, science, engineering and other sectors of the economy. Data scientists and machine learning professionals solve these problems through the use of classifiers. Choosing one of these data driven classification algorithms for a given problem is a challenging task. An important aspect involved in this task is classifier performance analysis (CPA).
Introduction to Classifier Performance Analysis with R provides an introductory account of commonly used CPA techniques for binary and multiclass problems, and use of the R software system to accomplish the analysis. Coverage draws on the extensive literature available on the subject, including descriptive and inferential approaches to CPA. Exercises are included at the end of each chapter to reinforce learning.
Key Features:
This is a useful resource for upper level undergraduate and masters level students in data science, machine learning and related disciplines. Practitioners interested in learning how to use R to evaluate classifier performance can also potentially benefit from the book. The material and references in the book can also serve the needs of researchers in CPA.