Sign up to save your library
With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.
Find this title in Libby, the library reading app by OverDrive.

Search for a digital library with this title
Title found at these libraries:
Library Name | Distance |
---|---|
Loading... |
サポート ベクター マシンとは
機械学習の分野では、サポート ベクター マシンは、分類と回帰分析のためにデータを検査する教師あり学習モデルです。 これらのモデルには、関連する学習アルゴリズムが付属しています。 AT&T Bell Laboratories の Vladimir Vapnik と彼の同僚がその作成を担当しました。 サポート ベクター マシン (SVM) は、Vapnik と Chervonenkis (1974 年) によって開発された統計学習フレームワークまたは VC 理論に基づいているため、最も正確な予測システムの 1 つです。 非確率的バイナリ線形分類器は、SVM トレーニング アルゴリズムに一連のトレーニング サンプルが与えられ、それぞれが 2 つのカテゴリのいずれかに属するものとしてマークされた場合に得られるものです。 次に、アルゴリズムは、後続の例を 2 つのカテゴリのいずれかに割り当てるか、どちらにも割り当てないモデルを開発します。 サポート ベクター マシン (SVM) は、2 つのカテゴリ間のサイズの差を最大化するような方法で、トレーニング サンプルを空間内の点に割り当てます。 その後、新しいサンプルが同じ空間にマッピングされ、ギャップのどちら側に該当するかに応じて、それらがどのカテゴリに属するかが予測されます。
どのようなメリットがあるか
(I) 次のトピックに関する洞察と検証:
第 1 章: サポート ベクター マシン
第 2 章: 線形分類器
第 3 章: パーセプトロン
第 4 章: 射影 (線形代数)
第 5 章: 線形分離性
第 6 章: カーネル法
第 7 章: 逐次最小最適化
第 8 章: 最小二乗サポート ベクター マシン
第 9 章: ヒンジ損失
第 10 章: 多項式 カーネル
(II) サポート ベクター マシンに関する一般のよくある質問に答える。
(III) 多くの分野でのサポート ベクター マシンの使用例の実例。
(IV) サポート ベクター マシンのテクノロジを 360 度完全に理解できるように、各業界の 266 の新興テクノロジを簡潔に説明する 17 の付録。
本書の対象者
専門家、学部生および大学院生、愛好家、愛好家、およびあらゆる種類のサポート ベクター マシンに関する基本的な知識や情報を超えたいと考えている人。