Correlation of Modelled Atmospheric Deposition of Cadmium, Mercury and Lead with the Measured Enrichment of these Elements in Moss

ebook

By Stefan Nickel

cover image of Correlation of Modelled Atmospheric Deposition of Cadmium, Mercury and Lead with the Measured Enrichment of these Elements in Moss

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
The book provides a unique analysis of current air pollution in Germany by correlating results from chemical transport modelling and accumulation monitoring by moss.Results of most recent modelling of atmospheric concentration and deposition of the metal elements Cd, Hg and Pb are compared with the results of technical measurements and bioindication with mosses. These modelling results with status 2020 have a higher spatial resolution of 0.1° x 0.1° than the modelling results valid up to then (50 km x 50 km). This leads to partly slightly higher correlations between the findings of the modelling and those of the moss monitoring. In this study, descriptive and correlation-statistical parameters are calculated, results and recommendations drawn described. A statistically adequately deepened analysis and evaluation of the highresolution modelling results requires additional methodological tools, which are outlined in summary. It is particularly important to link the exposure data from modelling, technical measurements and the findings from moss monitoring with information on the receptors, the ecosystem types. This is the only way to ensure that the results of the present project contribute to a more differentiated assessment of the impacts on ecosystems from atmospheric heavy metal deposition than has been the case to date, thus enabling a targeted further development of risk assessments for German
Correlation of Modelled Atmospheric Deposition of Cadmium, Mercury and Lead with the Measured Enrichment of these Elements in Moss