JAX/Flaxで学ぶディープラーニングの仕組み

ebook

By 中井悦司

cover image of JAX/Flaxで学ぶディープラーニングの仕組み

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。
話題のGoogle製ライブラリーを使った初の書籍!
本書は、Google製のライブラリーであるJAX、Flax、Optaxを利用して、ディープラーニングの機械学習モデルの構築方法を学ぶ書籍です。
● 本書の概要
本書では、ディープラーニングの代表例とも言える畳み込みニューラルネットワーク(CNN)を例として、これをJAX/Flax/Optaxで実装しながら、モデルの各パーツの役割を数式レベルで丁寧に解説していきます。
この際、モデル内部の処理の様子を確認するために、モデルの中身を分析するコードもあわせて利用します。JAX/Flax/Optaxを利用すれば、モデルの構築だけでなく、このような分析作業も簡単に実施できることが実感できるでしょう。
導入となる第1章では、JAX/Flax/Optaxの基本的な機能とその使い方を学ぶために、機械学習の基礎とも言える「最小二乗法」による回帰問題を利用します。まずは、JAXの機能だけを利用して、勾配降下法のアルゴリズムを独自に実装して、回帰モデルの学習を行います。その後、これと同等の処理をFlax/Optaxを組み合わせて、再度、実装してみます。これにより、Flax/Optaxの使い方に加えて、JAXの微分機能など、その背後で行われる実際の処理内容をより明確に理解することができるでしょう。
第2章以降では、より本格的な畳み込みニューラルネットワークを構築し、さらに、転移学習やDCGANによる画像生成モデルなども実装します。付録として、本書で使用するJAX/Flax/Optaxの主な関数の一覧も用意。JAX/Flax/Optaxの使い方をリファレンス的に知っておきたい方にもおすすめです。
中井 悦司 (なかい えつじ)
1971年4月大阪生まれ。ノーベル物理学賞を本気で夢見て、理論物理学の研究に没頭する学生時代、大学受験教育に情熱を傾ける予備校講師の頃、そして、華麗なる(?)転身を果たして、外資系ベンダーでLinuxエンジニアを生業にするに至るまで、妙な縁が続いて、常にUnix/Linuxサーバーと人生を共にする。その後、Linuxディストリビューターのエバンジェリストを経て、現在は、米系IT企業のSolutions Architectとして活動。
JAX/Flaxで学ぶディープラーニングの仕組み