Random Fields and Geometry

ebook Springer Monographs in Mathematics

By R. J. Adler

cover image of Random Fields and Geometry

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
Since the term "random ?eld'' has a variety of different connotations, ranging from agriculture to statistical mechanics, let us start by clarifying that, in this book, a random ?eld is a stochastic process, usually taking values in a Euclidean space, and de?ned over a parameter space of dimensionality at least 1. Consequently, random processes de?ned on countable parameter spaces will not 1 appear here. Indeed, even processes on R will make only rare appearances and, from the point of view of this book, are almost trivial. The parameter spaces we like best are manifolds, although for much of the time we shall require no more than that they be pseudometric spaces. With this clari?cation in hand, the next thing that you should know is that this book will have a sequel dealing primarily with applications. In fact, as we complete this book, we have already started, together with KW (Keith Worsley), on a companion volume [8] tentatively entitled RFG-A,or Random Fields and Geometry: Applications. The current volume—RFG—concentrates on the theory and mathematical background of random ?elds, while RFG-A is intended to do precisely what its title promises. Once the companion volume is published, you will ?nd there not only applications of the theory of this book, but of (smooth) random ?elds in general.
Random Fields and Geometry