Efficient Solving of Large Arithmetic Constraint Systems with Complex Boolean Structure

ebook Proof Engines for the Analysis of Hybrid Discrete-Continuous Systems

By Christian Herde

cover image of Efficient Solving of Large Arithmetic Constraint Systems with Complex Boolean Structure

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
Due to the growing use of more and more complex computerized systems in safety-critical applications, the formal verification of such systems is increasingly gaining importance. Many automatic and semi-automatic schemes for hardware and software verification ultimately rely on decision procedures for discharging the proof obligations generated during the verification process.

Christian Herde deals with the development of such procedures, providing methods for efficiently solving formulae comprising complex Boolean combinations of linear, polynomial, and transcendental arithmetic constraints, involving thousands of Boolean-, integer-, and real-valued variables. Although aiming at providing tool support for the verification of hybrid discrete-continuous systems, most of the techniques he describes are general purpose and have applications in many other domains, like operations research, planning, software validation, and electronic design automation.
Efficient Solving of Large Arithmetic Constraint Systems with Complex Boolean Structure