Simulation-based Algorithms for Markov Decision Processes

ebook Communications and Control Engineering

By Hyeong Soo Chang

cover image of Simulation-based Algorithms for Markov Decision Processes

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...

Often, real-world problems modeled by Markov decision processes (MDPs) are difficult to solve in practise because of the curse of dimensionality. In others, explicit specification of the MDP model parameters is not feasible, but simulation samples are available. For these settings, various sampling and population-based numerical algorithms for computing an optimal solution in terms of a policy and/or value function have been developed recently.

Here, this state-of-the-art research is brought together in a way that makes it accessible to researchers of varying interests and backgrounds. Many specific algorithms, illustrative numerical examples and rigorous theoretical convergence results are provided. The algorithms differ from the successful computational methods for solving MDPs based on neuro-dynamic programming or reinforcement learning. The algorithms can be combined with approximate dynamic programming methods that reduce the size of the state space and ameliorate the effects of dimensionality.

Simulation-based Algorithms for Markov Decision Processes