Functional Distribution of Anomalous and Nonergodic Diffusion

ebook From Stochastic Processes To Pdes

By Weihua Deng

cover image of Functional Distribution of Anomalous and Nonergodic Diffusion

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

app-store-button-en.svg play-store-badge-en.svg

Search for a digital library with this title

Title found at these libraries:

This volume presents a pedagogical review of the functional distribution of anomalous and nonergodic diffusion and its numerical simulations, starting from the studied stochastic processes to the deterministic partial differential equations governing the probability density function of the functionals. Since the remarkable theory of Brownian motion was proposed by Einstein in 1905, it had a sustained and broad impact on diverse fields, such as physics, chemistry, biology, economics, and mathematics. The functionals of Brownian motion are later widely attractive for their extensive applications. It was Kac, who firstly realized the statistical properties of these functionals can be studied by using Feynman's path integrals.In recent decades, anomalous and nonergodic diffusions which are non-Brownian become topical issues, such as fractional Brownian motion, Lévy process, Lévy walk, among others. This volume examines the statistical properties of the non-Brownian functionals, derives the governing equations of their distributions, and shows some algorithms for solving these equations numerically.
Functional Distribution of Anomalous and Nonergodic Diffusion