Fusion Reactor Design

ebook Plasma Physics, Fuel Cycle System, Operation and Maintenance

By Takashi Okazaki

cover image of Fusion Reactor Design

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
Fusion Reactor Design

Provides a detailed overview of fusion reactor design, written by an international leader in the field

Nuclear fusion—generating four times as much energy from the same mass of fuel as nuclear fission—is regarded by its proponents as a viable, eco-friendly alternative to gas-fired, coal-fired, and conventional power plants. Although the physics of nuclear fusion is essentially understood, the construction of prototype reactors currently presents significant technical challenges. Fusion Reactor Design: Plasma Physics, Fuel Cycle System, Operation and Maintenance provides a systematic, reader-friendly introduction to the characteristics, components, and critical systems of fusion reactors.

Focusing on the experimental Tokamak reactor, this up-to-date resource covers relevant plasma physics, necessary technology, analysis methods, and the other aspects of fusion reactors. In-depth chapters include derivations of key formulas, figures highlighting physical and structural characteristics of fusion reactors, illustrative numerical calculations, practical design examples, and more. Designed to help researchers and engineers understand and overcome the technological difficulties in making fusion power a reality, this volume:

  • Provides in-depth knowledge on controlled thermonuclear fusion and its large-scale application in both current fusion reactors and future test reactors
  • Covers plasma analysis, plasma equilibrium and stability, and plasma transport and confinement, and safety considerations
  • Explains each component of fusion reactors, including divertors, superconducting coils, plasma heating and current drive systems, and vacuum vessels
  • Discusses safety aspects of fusion reactors as well as computational approaches to safety aspects of fusion reactors
  • Fusion Reactor Design: Plasma Physics, Fuel Cycle System, Operation and Maintenance is required reading for undergraduate and graduate students studying plasma physics and fusion reactor technology, and an important reference for nuclear physicists, nuclear reactor manufacturers, and power engineers involved in fusion reactor research and advanced technology development.

    Fusion Reactor Design