The Complexity of Noise

ebook A Philosophical Outlook on Quantum Error Correction · Synthesis Lectures on Quantum Computing

By Amit Hagar

cover image of The Complexity of Noise

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
In quantum computing, where algorithms exist that can solve computational problems more efficiently than any known classical algorithms, the elimination of errors that result from external disturbances or from imperfect gates has become the "holy grail", and a worldwide quest for a large scale fault-tolerant, and computationally superior, quantum computer is currently taking place. Optimists rely on the premise that, under a certain threshold of errors, an arbitrary long fault-tolerant quantum computation can be achieved with only moderate (i.e., at most polynomial) overhead in computational cost. Pessimists, on the other hand, object that there are in principle (as opposed to merely technological) reasons why such machines are still inexistent, and that no matter what gadgets are used, large scale quantum computers will never be computationally superior to classical ones. Lacking a complete empirical characterization of quantum noise, the debate on the physical possibility of such machines invites philosophical scrutiny. Making this debate more precise by suggesting a novel statistical mechanical perspective thereof is the goal of this project. Table of Contents: Introduction / The Curse of the Open System / To Balance a Pencil on Its Tip / Universality at All Cost / Coda
The Complexity of Noise