JMP for Mixed Models

ebook

By Ruth Hummel

cover image of JMP for Mixed Models

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...

Discover the power of mixed models with JMP and JMP Pro.

Mixed models are now the mainstream method of choice for analyzing experimental data. Why? They are arguably the most straightforward and powerful way to handle correlated observations in designed experiments. Reaching well beyond standard linear models, mixed models enable you to make accurate and precise inferences about your experiments and to gain deeper understanding of sources of signal and noise in the system under study. Well-formed fixed and random effects generalize well and help you make the best data-driven decisions.

JMP for Mixed Models brings together two of the strongest traditions in SAS software: mixed models and JMP. JMP's groundbreaking philosophy of tight integration of statistics with dynamic graphics is an ideal milieu within which to learn and apply mixed models, also known as hierarchical linear or multilevel models. If you are a scientist or engineer, the methods described herein can revolutionize how you analyze experimental data without the need to write code.

Inside you'll find a rich collection of examples and a step-by-step approach to mixed model mastery. Topics include:

  • Learning how to appropriately recognize, set up, and interpret fixed and random effects
  • Extending analysis of variance (ANOVA) and linear regression to numerous mixed model designs
  • Understanding how degrees of freedom work using Skeleton ANOVA
  • Analyzing randomized block, split-plot, longitudinal, and repeated measures designs
  • Introducing more advanced methods such as spatial covariance and generalized linear mixed models
  • Simulating mixed models to assess power and other important sampling characteristics
  • Providing a solid framework for understanding statistical modeling in general
  • Improving perspective on modern dilemmas around Bayesian methods, p-values, and causal inference
  • JMP for Mixed Models