Test Configurations, Stabilities and Canonical Kähler Metrics

ebook Complex Geometry by the Energy Method · SpringerBriefs in Mathematics

By Toshiki Mabuchi

cover image of Test Configurations, Stabilities and Canonical Kähler Metrics

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
The Yau-Tian-Donaldson conjecture for anti-canonical polarization was recently solved affirmatively by Chen-Donaldson-Sun and Tian. However, this conjecture is still open for general polarizations or more generally in extremal Kähler cases. In this book, the unsolved cases of the conjecture will be discussed.

It will be shown that the problem is closely related to the geometry of moduli spaces of test configurations for polarized algebraic manifolds.

Another important tool in our approach is the Chow norm introduced by Zhang. This is closely related to Ding's functional, and plays a crucial role in our differential geometric study of stability. By discussing the Chow norm from various points of view, we shall make a systematic study of the existence problem of extremal Kähler metrics.
Test Configurations, Stabilities and Canonical Kähler Metrics