
Sign up to save your library
With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.
Find this title in Libby, the library reading app by OverDrive.

Search for a digital library with this title
Title found at these libraries:
Library Name | Distance |
---|---|
Loading... |
※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonでデータサイエンスの理論と実践を学ぶ データサイエンスは、「データを科学的に扱う」学問分野であり、近年、ICTの進展によって、センサやインターネットを通じて取得できるデータ量が爆発的に増加したこと、コンピュータの高性能化に伴ってこれまでできなかった大規模なデータ処理が可能となったことなどから注目されています。 本書は、データサイエンスの意味から金融データの分析、動的システムの分析などの工学応用までを、Pythonを使って実際に分析しながら学ぶものです.データの取り扱い、確率・統計の基礎といった基本的なところから、回帰分析、パターン認識、深層学習といった統計・機械学習手法、金融データなど時々刻々と変化する時系列データの分析、センサデータなどに含まれるノイズや外乱を見極めるスペクトル分析、さらにこのノイズや外乱を除去するためのディジタルフィルタ、そして最後に画像データの分析として画像処理の解説を行い、読者がデータサイエンスの一通りを俯瞰できるようになっています。 Pythonを使った解説によって理論と実践を同時に学ぶことができるので、データサイエンスを学び、自身の分野に応用したい方にピッタリの一冊です。 1章 はじめに
2章 データの扱いと可視化
3章 確率の基礎
4章 統計の基礎
5章 回帰分析
6章 パターン認識
7章 深層学習(ディープラーニング)
8章 時系列データ分析
9章 スペクトル分析
10章 ディジタルフィルタ
11章 画像処理
おわりに
参考文献