Deep Learning through Sparse and Low-Rank Modeling

ebook Computer Vision and Pattern Recognition

By Zhangyang Wang

cover image of Deep Learning through Sparse and Low-Rank Modeling

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models—those that emphasize problem-specific Interpretability—with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics. - Combines classical sparse and low-rank models and algorithms with the latest advances in deep learning networks - Shows how the structure and algorithms of sparse and low-rank methods improves the performance and interpretability of Deep Learning models - Provides tactics on how to build and apply customized deep learning models for various applications
Deep Learning through Sparse and Low-Rank Modeling