Search for the Pentaquark Θ+ via the π−p → K−X Reaction at J-PARC

ebook Springer Theses

By Manabu Moritsu

cover image of Search for the Pentaquark Θ+ via the π−p → K−X Reaction at J-PARC

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...

This theses reports on an experimental search for an exotic hadron, Θ+(1540) pentaquark, which is a genuine exotic hadron with a five-quark system of uuddsbar. The results of this book support that the existence of Θ+ was strongly constrained. 

The Θ+ pentaquark was searched for via the π- p → K- X reaction using a beam momentum of 2.01 GeV/c at the J-PARC hadron experimental facility, taking advantage of high-statistics and high-resolution compared with previous experiments, some of which claimed the evidence of Θ+. In order to realize a good missing-mass resolution of 2 MeV, the beam spectrometer and superconducting kaon spectrometer were constructed.

No clear peak was observed in the missing mass spectrum of the π- p → K- X reaction, and the upper limit of the production cross section was found to be less than 0.28 μb/sr at the 90% confidence level in a mass region of 1500–1560 MeV/c2. This upper limit is an order of magnitude smaller than that of the previous KEK experiment. Compared with a theoretical calculation using the effective Lagrangian approach, the decay width of Θ+ was evaluated. The upper limits on the decay width were estimated to be 0.36 and 1.9 MeV for the Θ+ spin-parity of 1/2+ and 1/2-, respectively. These are quite small for a width of ordinary hadron resonances, and the existence of Θ+ was strongly constrained and is doubtful.

Search for the Pentaquark Θ+ via the π−p → K−X Reaction at J-PARC