Algebraic Geometry

ebook Part I: Schemes. With Examples and Exercises · Advanced Lectures in Mathematics

By Ulrich Görtz

cover image of Algebraic Geometry

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
Algebraic geometry has its origin in the study of systems of polynomial equations f (x ,. . . ,x )=0, 1 1 n . . . f (x ,. . . ,x )=0. r 1 n Here the f ? k[X ,. . . ,X ] are polynomials in n variables with coe?cients in a ?eld k. i 1 n n ThesetofsolutionsisasubsetV(f ,. . . ,f)ofk . Polynomialequationsareomnipresent 1 r inandoutsidemathematics,andhavebeenstudiedsinceantiquity. Thefocusofalgebraic geometry is studying the geometric structure of their solution sets. n If the polynomials f are linear, then V(f ,. . . ,f ) is a subvector space of k. Its i 1 r "size" is measured by its dimension and it can be described as the kernel of the linear n r map k ? k , x=(x ,. . . ,x ) ? (f (x),. . . ,f (x)). 1 n 1 r For arbitrary polynomials, V(f ,. . . ,f ) is in general not a subvector space. To study 1 r it, one uses the close connection of geometry and algebra which is a key property of algebraic geometry, and whose ?rst manifestation is the following: If g = g f +. . . g f 1 1 r r is a linear combination of the f (with coe?cients g ? k[T ,. . . ,T ]), then we have i i 1 n V(f ,. . . ,f)= V(g,f ,. . . ,f ). Thus the set of solutions depends only on the ideal 1 r 1 r a? k[T ,. . . ,T ] generated by the f .
Algebraic Geometry