Stability of Functional Equations in Random Normed Spaces
ebook ∣ Springer Optimization and Its Applications
By Yeol Je Cho
Sign up to save your library
With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.
Find this title in Libby, the library reading app by OverDrive.

Search for a digital library with this title
Title found at these libraries:
Loading... |
This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hyers in 1941 and that of Themistocles M. Rassias in 1978 have provided a great deal of inspiration and guidance for mathematicians worldwide to investigate this extensive domain of research.
The book presents a self-contained survey of recent and new results on topics including basic theory of random normed spaces and related spaces; stability theory for new function equations in random normed spaces via fixed point method, under both special and arbitrary t-norms; stability theory of well-known new functional equations in non-Archimedean random normed spaces; and applications in the class of fuzzy normed spaces. It contains valuable results on stability in random normed spaces, and is geared toward both graduate students and research mathematicians and engineers in a broad area of interdisciplinary research.