Gene Engineering in Endocrinology

ebook Contemporary Endocrinology

By Margaret A. Shupnik

Gene Engineering in Endocrinology

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
During the past five to ten years, a variety of tools has been developed in the disciplines of both gene engineering, and molecular and structural biology. Some of these advances have permitted scientists not only to identify and characterize genes, but also to target these genes by disruption, thus eliminating their function in living animals, and to det- mine the biological responses to altered gene products. This has particular significance in endocrine systems, in which feedback mechanisms between the hypothalamus, pi- itary, and end organs are critical in normal physiology. Interpretation of the physiological significance, or the site of action of specific molecules in this context, has been difficult prior to transgenic technology. Major advances have occurred specifically in the areas of growth and development, and of reproduction. Coupled with analysis of naturally occurring mutations in humans, the use of transgenic animals and in vitro systems has recently allowed endocrinologists to understand the importance of specific thyroid hormone receptor isoforms in vivo, the molecular basis for generalized resistance to thyroid hormones via mutations in the nuclear receptor, and mechanisms for suppressing gene transcription. Previously designated "orphan rec- tors," such as steroidogenic factor-1, were demonstrated to have critical roles in dev- opment and reproduction. Other nuclear receptors—including those for thyroid hormone, estrogens, androgens, and progesterone—were shown to bind to coactivator and co- pressor proteins that modified their transcriptional activity, and contributed to the ce- specific effects of the hormones.
Gene Engineering in Endocrinology