Approximation Methods for Polynomial Optimization

ebook Models, Algorithms, and Applications · SpringerBriefs in Optimization

By Zhening Li

cover image of Approximation Methods for Polynomial Optimization

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...

Polynomial optimization have been a hot research topic for the past few years and its applications range from Operations Research, biomedical engineering, investment science, to quantum mechanics, linear algebra, and signal processing, among many others. In this brief the authors discuss some important subclasses of polynomial optimization models arising from various applications, with a focus on approximations algorithms with guaranteed worst case performance analysis. The brief presents a clear view of the basic ideas underlying the design of such algorithms and the benefits are highlighted by illustrative examples showing the possible applications.

 

This timely treatise will appeal to researchers and graduate students in the fields of optimization, computational mathematics, Operations Research, industrial engineering, and computer science.

Approximation Methods for Polynomial Optimization