Name Reactions in Heterocyclic Chemistry

ebook Comprehensive Name Reactions

By Jie Jack Li

cover image of Name Reactions in Heterocyclic Chemistry

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
Covers important name reactions relevant to heterocyclic chemistry

The field of heterocyclic chemistry has long presented a special challenge for chemists. Because of the enormous amount and variety of information, it is often a difficult topic to cover for undergraduate and graduate chemistry students, even in simplified form. Yet the chemistry of heterocyclic compounds and methods for their synthesis form the bedrock of modern medicinal chemical and pharmaceutical research. Thus there is a great need for high quality, up-to-date, and authoritative books on heterocyclic synthesis helpful to both the professional research chemist as well as the advanced student.

Name Reactions in Heterocyclic Chemistry provides a one-stop repository for this important field of organic chemistry. The primary topics include three- and four-membered heterocycles, five-membered heterocycles including indoles, furans, thiophenes, and oxazoles, six-membered heterocycles including quinolines, isoquinolines, and pyrimidines, and other heterocycles.

Each name reaction is summarized in seven sections:

  • Description
  • Historical perspective
  • Mechanism
  • Variations and improvements
  • Synthetic utility
  • Experimental
  • References
  • Authored by a team of world-renowned contributors - some of whom have discovered the very reactions they describe - Name Reactions in Heterocyclic Chemistry represents a state-of-the-art resource for students and researchers alike.
    Name Reactions in Heterocyclic Chemistry