Variational Methods for Boundary Value Problems for Systems of Elliptic Equations
ebook ∣ Dover Books on Mathematics
By M. A. Lavrent'ev

Sign up to save your library
With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.
Find this title in Libby, the library reading app by OverDrive.

Search for a digital library with this title
Title found at these libraries:
Loading... |
In this famous monograph, a distinguished mathematician presents an innovative approach to classical boundary value problems ― one that may be used by mathematicians as well as by theoreticians in mechanics. The approach is based on a number of geometric properties of conformal and quasi-conformal mappings and employs the general basic scheme for solution of variational problems first suggested by Hilbert and developed by Tonnelli.
The first two chapters cover variational principles of the theory of conformal mapping and behavior of a conformal transformation on the boundary. Chapters 3 and 4 explore hydrodynamic applications and quasiconformal mappings, and the final two chapters address linear systems and the simplest classes of non-linear systems. Mathematicians will take particular interest in the method of the proof of the existence and uniqueness theorems as well as the general theory of quasi-conformal mappings. Theoreticians in mechanics will find the approximate formulas for conformal and quasi-conformal
The first two chapters cover variational principles of the theory of conformal mapping and behavior of a conformal transformation on the boundary. Chapters 3 and 4 explore hydrodynamic applications and quasiconformal mappings, and the final two chapters address linear systems and the simplest classes of non-linear systems. Mathematicians will take particular interest in the method of the proof of the existence and uniqueness theorems as well as the general theory of quasi-conformal mappings. Theoreticians in mechanics will find the approximate formulas for conformal and quasi-conformal