Methods of Contour Integration

ebook North-Holland Series in Applied Mathematics and Mechanics

By M. L. Rasulov

cover image of Methods of Contour Integration

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Loading...
Methods of Contour Integration contains two parts: (1) a systematic exposition of the computational method for solving boundary and mixed problems, and (2) the contour-integral method for investigating general linear mixed problems. The first part includes formulae for expanding arbitrary vector-valued functions in series from integral residues of solutions of boundary-value problems for systems of ordinary differential equations with discontinuous coefficients. These formulae give residue representations of solutions of the corresponding one-dimensional mixed problems for equations with discontinuous coefficients. The book also explains a computational method of separating the variables which is a generalization of the ordinary method of separating variables to the case of nonself-adjoint operators. In part two, the text discusses one-dimensional mixed problems for equations with discontinuous coefficients. Under regular boundary conditions, it proves the existence of solutions for these problems and the representability of the solutions in the form of contour integrals with a complex parameter. The text points out that the contour-integral method is also applicable to parabolic equations and to equations in which the coefficients are functions of time. The book is ideal for mathematicians, students, and professor of calculus and advanced mathematics.
Methods of Contour Integration