
Sign up to save your library
With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.
Find this title in Libby, the library reading app by OverDrive.

Search for a digital library with this title
Title found at these libraries:
Loading... |
"The most readable introduction to the theory of vector spaces available in English and possibly any other language."—J. L. B. Cooper, MathSciNet Review
Mathematically rigorous but user-friendly, this classic treatise discusses major modern contributions to the field of topological vector spaces. The self-contained treatment includes complete proofs for all necessary results from algebra and topology. Suitable for undergraduate mathematics majors with a background in advanced calculus, this volume will also assist professional mathematicians, physicists, and engineers.
The precise exposition of the first three chapters—covering Banach spaces, locally convex spaces, and duality—provides an excellent summary of the modern theory of locally convex spaces. The fourth and final chapter develops the theory of distributions in relation to convolutions, tensor products, and Fourier transforms. Augmented with many examples and exercises, the text includes an extensive bibliography.
Mathematically rigorous but user-friendly, this classic treatise discusses major modern contributions to the field of topological vector spaces. The self-contained treatment includes complete proofs for all necessary results from algebra and topology. Suitable for undergraduate mathematics majors with a background in advanced calculus, this volume will also assist professional mathematicians, physicists, and engineers.
The precise exposition of the first three chapters—covering Banach spaces, locally convex spaces, and duality—provides an excellent summary of the modern theory of locally convex spaces. The fourth and final chapter develops the theory of distributions in relation to convolutions, tensor products, and Fourier transforms. Augmented with many examples and exercises, the text includes an extensive bibliography.