Kernel Functions and Elliptic Differential Equations in Mathematical Physics

ebook Dover Books on Mathematics

By Stefan Bergman

cover image of Kernel Functions and Elliptic Differential Equations in Mathematical Physics

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.The two-part treatment begins with a survey of boundary value problems occurring in certain branches of theoretical physics. It introduces fundamental solutions in a heuristic way and examines their physical significance. Many concepts can be unified by concentrating upon these particular kernels, and the text explains the common mathematical background of widely varying theories, such as those of heat conduction, hydrodynamics, electrostatics, magnetostatics, and elasticity. In addition to its intrinsic interest, this material provides illustrations and exact mathematical formulation of the problems and the methods. The second part is confined to a rather special type of partial differential equation, which is dealt with in the greatest detail so that students can make applications and generalizations to similar problems.
Kernel Functions and Elliptic Differential Equations in Mathematical Physics