Time Series Forecasting using Machine Learning
ebook ∣ Case Studies with R and iForecast · Mathematics and Statistics
By Tsung-wu Ho
Sign up to save your library
With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.
Find this title in Libby, the library reading app by OverDrive.

Search for a digital library with this title
Title found at these libraries:
Library Name | Distance |
---|---|
Loading... |
This book uses R package, iForecast, to conduct financial economic time series forecasting with machine learning methods, especially the generation of dynamic forecasts out-of-sample. Machine learning methods cover enet, random forecast, gbm, and autoML etc., including binary economic time series. The book explains the problem about the generation of recursive forecasts in machine learning framework, under which, there are no covariates, namely, input (independent) variables. This case is pretty common in real decision environment, for example, the decision-making wants 6-month forecasts in the real future, under which there are no covariates available; therefore, practitioners use recursive or multistep, forecasts. Besides macro-econometric modelling which uses VAR (vector autoregression) to overcome the problem of multivariate regression, this book offers a Machine-Learning VAR routine, which is found to improve the performance of multistep forecasting.