Machine Learning Perspectives of Agent-Based Models

ebook Practical Applications to Economic Crises and Pandemics with Python, R, Netlogo and Julia

By Pedro Campos

cover image of Machine Learning Perspectives of Agent-Based Models

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...

This book provides an overview of agent-based modeling (ABM) and multi-agent systems (MAS), emphasizing their significance in understanding complex economic systems, with a special focus on the emerging properties of heterogeneous agents that cannot be deduced from the characteristics of individual agents. ABM is highlighted as a powerful tool for studying economics, especially in the context of financial crises and pandemics, where traditional models, such as dynamic stochastic general equilibrium (DSGE) models, have proven inadequate.

Containing numerous practical examples and applications with R, Python, Julia and Netlogo, the book explores how learning, particularly machine learning, can be integrated into multi-agent systems to enhance the adaptation and behavior of agents in dynamic environments. It compares different learning approaches, including game theory and artificial intelligence, highlighting the advantages of each in modeling economic phenomena.

Machine Learning Perspectives of Agent-Based Models