Unsupervised Computer Vision for Aerospace Systems

ebook Spacecraft Pose Estimation to Infrastructure Health Monitoring · Scientific Computation

By Zhaoxiang Zhang

cover image of Unsupervised Computer Vision for Aerospace Systems

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...

This book addresses perception and monitoring challenges in aerospace systems by employing innovative unsupervised learning techniques, thereby providing solutions for scenarios characterized by limited labelled data or dynamic environments. It explores practical methods such as domain adaptation for cross-modal pose estimation, causal inference for point cloud segmentation, and lightweight vision models optimized for edge computing. Key features include algorithm flowcharts, performance comparison tables, and real-world case studies covering planetary crater detection and spacecraft pose estimation. The integration of generative adversarial networks (GANs) for satellite jitter estimation and multistep adaptation strategies for defect detection offers actionable insights, supported by real industrial datasets, embedded hardware schematics, software code snippets, and optimization guidelines for real-time deployment. Engineers and researchers will obtain tools to enhance robustness across modalities and domains, ensuring generalizability in resource-constrained settings. This book serves as a valuable reference for aerospace engineers, computer vision specialists, and remote sensing practitioners and also empowers aerospace infrastructure inspectors adopting advanced vision technologies.

Unsupervised Computer Vision for Aerospace Systems