Ray Tune for Scalable Hyperparameter Optimization

ebook The Complete Guide for Developers and Engineers

By William Smith

cover image of Ray Tune for Scalable Hyperparameter Optimization

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...

"Ray Tune for Scalable Hyperparameter Optimization"
"Ray Tune for Scalable Hyperparameter Optimization" provides a comprehensive guide to mastering the complexities of hyperparameter tuning in modern machine learning workflows. The book begins by establishing a rigorous foundation in large-scale hyperparameter optimization, delving into both the mathematical essentials and the real-world demands for scalability and efficiency. Readers gain a nuanced understanding of search space explosion, resource management, and the advanced metrics crucial for evaluating and driving effective and efficient optimization at scale.
The book then gives an authoritative treatment of Ray Tune's architecture and API, offering both conceptual overviews and hands-on best practices. It details design abstractions, experiment lifecycles, robust checkpointing, fault tolerance, and plugin interfaces, empowering practitioners to extend and adapt Ray Tune to fit unique research or industry needs. Through in-depth discussions of parameter space definitions, customized scheduling algorithms, sampling strategies, and advanced resource scheduling, the text illustrates how professionals can unlock sophisticated, distributed hyperparameter search pipelines on local clusters, cloud platforms, and Kubernetes.
Culminating in practical applications, the book addresses large-scale deep learning, AutoML, and reproducibility, while also tackling operational concerns such as cluster security, monitoring, and cost optimization. Readers are guided through diagnostics, visualization, and experiment analysis, as well as advanced topics like federated tuning and neural architecture search. By combining real-world case studies, emergent best practices, and future research avenues, this book is an essential resource for data scientists, ML engineers, and researchers seeking to accelerate and industrialize their hyperparameter optimization efforts with Ray Tune.

Ray Tune for Scalable Hyperparameter Optimization