Adversarial Deep Generative Techniques for Early Diagnosis of Neurological Conditions and Mental Health Practises

ebook Theoretical Insights with Practical Applications · Information Systems Engineering and Management

By Abhishek Kumar

cover image of Adversarial Deep Generative Techniques for Early Diagnosis of Neurological Conditions and Mental Health Practises

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...

This book explores a pioneering exploration of how deep generative models, including generative adversarial networks (GANs) and variational autoencoders (VAEs), renovating early neurological disorder detection. This book is a bridge between computational neuroscience and clinical neurology gaps, providing novel AI-driven methodologies for diagnosing conditions such as Alzheimer’s, Parkinson’s, epilepsy, and neurodevelopmental disorders. With a strong focus on neuroimaging, genomic data analysis, and biomedical informatics, the book equips researchers and practitioners with the tools to improve diagnostic accuracy and decision-making. It includes practical case studies, visual illustrations, and structured methodologies for training and validating deep learning models. Designed for neurologists, radiologists, data scientists, and AI researchers, this book is an essential resource for advancing precision medicine and next-generation healthcare innovation.

Adversarial Deep Generative Techniques for Early Diagnosis of Neurological Conditions and Mental Health Practises