Data Engineering for AI
ebook ∣ Enhance Data Persistence Strategies for Optimal AI and Analytical Workload Performance
By Sundeep Goud Katta
Sign up to save your library
With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.
Find this title in Libby, the library reading app by OverDrive.

Search for a digital library with this title
Title found at these libraries:
Library Name | Distance |
---|---|
Loading... |
Data engineering is the critical discipline of building and maintaining the systems that enable organizations to collect, store, process, and analyze vast amounts of data, especially for advanced applications like AI and ML. It is about ensuring that it is reliable, accessible, and high-quality for everyone who needs it.
This book provides a thorough exploration of the complete data lifecycle, starting with data engineering's development and its vital link to AI. It provides an overview of scalable data practices, from legacy systems to cutting-edge techniques. The reader will explore real-time data collection, secure ingestion, optimized storage, and dynamic processing techniques. The book features detailed discussions on ETL and ELT frameworks, performance tuning, and quality assurance that are complemented by real-world case studies. All these empower the data engineers to design systems that are seamless and integrate well with AI pipelines, driving innovation across diverse industries.
By the end of this book, readers will be well-equipped to design, implement, and manage scalable data engineering solutions that effectively support and drive AI initiatives within any organization.