Probabilistic Optimisation of Composite Structures

ebook Machine Learning For Design Optimisation · Computational and Experimental Methods In Structures

By Kwangkyu Alex Yoo

cover image of Probabilistic Optimisation of Composite Structures

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
This book introduces an innovative approach to multi-fidelity probabilistic optimisation for aircraft composite structures, addressing the challenge of balancing reliability with computational cost. Probabilistic optimisation pursues statistically reliable and robust solutions by accounting for uncertainties in data, such as material properties and geometry tolerances. Traditional approaches using high-fidelity models, though accurate, are computationally expensive and time-consuming, especially when using complex methods such as Monte Carlo simulations and gradient calculations.For the first time, the proposed multi-fidelity method combines high- and low-fidelity models, enabling high-fidelity models to focus on specific areas of the design space, while low-fidelity models explore the entire space. Machine learning technologies, such as artificial neural networks and nonlinear autoregressive Gaussian processes, fill information gaps between different fidelity models, enhancing model accuracy. The multi-fidelity probabilistic optimisation framework is demonstrated through the reliability-based and robust design problems of aircraft composite structures under a thermo-mechanical environment, showing acceptable accuracy and reductions in computational time.
Probabilistic Optimisation of Composite Structures