Introduction to Solid State Physics

audiobook (Unabridged) The Basics of Solid State Physics

By Mark Hedges

cover image of Introduction to Solid State Physics
Audiobook icon Visual indication that the title is an audiobook

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...

Crystal structure and bonding are fundamental to understanding the physical properties of solid materials. A crystal is a solid material whose atoms, ions, or molecules are arranged in a highly ordered, repeating pattern extending in all three spatial dimensions. The smallest repeating unit of this structure is called the unit cell. The unit cell defines the crystal's lattice parameters, including the edge lengths a,b,ca, b, c and the angles between them α,β,γ\alpha, \beta, \gamma. The crystal lattice is generated by translating the unit cell along its edges, forming the complete crystalline structure.

Crystals are classified according to their symmetry into seven crystal systems: cubic, tetragonal, orthorhombic, monoclinic, triclinic, hexagonal, and rhombohedral. Each system is characterized by specific symmetry elements such as mirror planes, rotation axes, and inversion centers. The Bravais lattices describe the 14 distinct lattice types that can fill three-dimensional space using translational symmetry. The atomic positions within a unit cell are described by fractional coordinates relative to the lattice vectors. In a face-centered cubic (FCC) lattice, atoms are located at the corners and the centers of the faces of the cube, while in a body-centered cubic (BCC) lattice, an additional atom is placed at the center of the cube.

Introduction to Solid State Physics