Complexity Measurements and Causation for Dynamic Complex Systems

ebook Understanding Complex Systems

By Juan Guillermo Diaz Ochoa

cover image of Complexity Measurements and Causation for Dynamic Complex Systems

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...

This book examines the problems of causal determinism and limited completeness in systems theory. Furthermore, the author analyzes options for complexity measurements that include systems’ autonomy and variability for causal inference—i.e., the ability to derive causal relationships from data recorded as a function of time. Such complexity measures present limitations in the derivation of absolute causality in complex systems and the recognition of relative and contextual causality, with practical consequences for causal inference and modeling.

Finally, the author provides concepts for relative causal determinism. As a result, new ideas are presented to explore the frontiers of systems theory, specifically in relation to biological systems and teleonomy, i.e., evolved biological purposiveness.

This book is written for graduate students in physics, biology, medicine, social sciences, economics, and engineering who are seeking new concepts of causal inference applied in systems theory. It is also intended for scientists with an interest in philosophy and philosophers interested in the foundations of systems theory. Additionally, data scientists seeking new methods for the analysis of time series to extract features useful for machine learning will find this book of interest.

Complexity Measurements and Causation for Dynamic Complex Systems