Machine Learning Hero
ebook ∣ Master Data Science with Python Essentials
By Cuantum Technologies LLC
Sign up to save your library
With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.
Find this title in Libby, the library reading app by OverDrive.

Search for a digital library with this title
Title found at these libraries:
Loading... |
Learn machine learning through hands-on Python projects, covering core concepts, essential libraries, and real-world applications for aspiring data scientists.Key FeaturesComprehensive coverage of machine learning fundamentals and advanced topics Real-world projects to apply skills in practical scenarios Integration of Python libraries for data science and AI development Book DescriptionThis book takes you on a journey through the world of machine learning, beginning with foundational concepts such as supervised and unsupervised learning, and progressing to advanced topics like feature engineering, hyperparameter tuning, and dimensionality reduction. Each chapter blends theory with practical exercises to ensure a deep understanding of the material.
The book emphasizes Python, introducing essential libraries like NumPy, Pandas, Matplotlib, and Scikit-learn, along with deep learning frameworks like TensorFlow and PyTorch. You'll learn to preprocess data, visualize insights, and build models capable of tackling complex datasets. Hands-on coding examples and exercises reinforce concepts and help bridge the gap between knowledge and application.
In the final chapters, you'll work on real-world projects like predictive analytics, clustering, and regression. These projects are designed to provide a practical context for the techniques learned and equip you with actionable skills for data science and AI roles. By the end, you'll be prepared to apply machine learning principles to solve real-world challenges with confidence.What you will learnBuild machine learning models using Python libraries Apply feature engineering and preprocessing techniques Visualize datasets with Matplotlib and Seaborn Optimize machine learning models with hyperparameter tuning Implement clustering and dimensionality reduction methods Work on real-world projects for practical experience Who this book is for
Aspiring data scientists, software developers, and tech enthusiasts seeking to master machine learning concepts and Python libraries. Basic Python knowledge is recommended but not required, as foundational topics are covered.
]]>