Técnicas Estadísticas para la Ciencia de Datos a través de R. Aprendizaje no Supervisado

ebook Análisis Clúster, Redes Neuronales y Escalamiento Multidimensional

By César Pérez López

cover image of Técnicas Estadísticas para la Ciencia de Datos a través de R. Aprendizaje no Supervisado

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...

La Ciencia de Datos supone la base de la Inteligencia Artificial y el futuro de todos los procesos complejos de toma de decisiones combinando algoritmos matemáticos y técnicas de Aprendizaje Automático. La Ciencia de Datos proporciona la estructura necesaria para entrenar modelos de Inteligencia Artificial. Las técnicas estadísticas son un gran apoyo para la algoritmia de la ciencia de datos. A lo largo de este libro se desarrollan gran parte de las técnicas de aprendizaje no supervisado desde un punto de vista metodológico y desde un punto de vista práctico con aplicaciones a través del software R. Se profundiza en las Técnicas de Clasificación y Segmentación como el Análisis Clúster, el Escalamiento Multidimensional y el Análisis de Correspondencias. Se desarrolla especialmente el uso de las Redes Neuronales para la clasificación tratando las Redes de Kohonen, las Redes SOM (Self Organizing Maps), las Redes Neuronales Convolucionales (CNNs), las Redes de Hopfield, detección de anomalías, Autoencoders y reconocimiento de patrones. Todas las técnicas se abordan desde una doble óptica teórica y práctica.

Técnicas Estadísticas para la Ciencia de Datos a través de R. Aprendizaje no Supervisado