New Generation Artificial Intelligence-Driven Diagnosis and Maintenance Techniques

ebook Advanced Machine Learning Models, Methods and Applications · Smart Sensors, Measurement and Instrumentation

By Guangrui Wen

cover image of New Generation Artificial Intelligence-Driven Diagnosis and Maintenance Techniques

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...

The intelligent diagnosis and maintenance of the machine mainly includes condition monitoring, fault diagnosis, performance degradation assessment and remaining useful life prediction, which plays an important role in protecting people's lives and property. In actual engineering scenarios, machine users always hope to use an automatic method to shorten the maintenance cycle and improve the accuracy of fault diagnosis and prognosis. In the past decade, Artificial Intelligence applications have flourished in many different fields, which also provide powerful tools for intelligent diagnosis and maintenance.

This book highlights the latest advances and trends in new generation artificial intelligence-driven techniques, including knowledge-driven deep learning, transfer learning, adversarial learning, complex network, graph neural network and multi-source information fusion, for diagnosis and maintenance of rotating machinery. Its primary focus is on the utilization of advanced artificial intelligence techniques to monitor, diagnose, and perform predictive maintenance of critical structures and machines, such as aero-engine, gas turbines, wind turbines, and machine tools.

The main markets of this book include academic and industrial fields, such as academic institutions, libraries of university, industrial research center. This book is essential reading for faculty members of university, graduate students, and industry professionals in the fields of diagnosis and maintenance.

New Generation Artificial Intelligence-Driven Diagnosis and Maintenance Techniques