The LLM Security Handbook

audiobook (Unabridged) Building Trustworthy AI Applications

By Anand Vemula

cover image of The LLM Security Handbook
Audiobook icon Visual indication that the title is an audiobook

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Loading...

This audiobook is narrated by a digital voice.


In a world increasingly powered by artificial intelligence, Large Language Models (LLMs) are emerging as powerful tools capable of generating human-quality text, translating languages, and writing different creative content. However, this power comes with hidden risks. This book dives deep into the world of LLM security, providing a comprehensive guide for developers, security professionals, and anyone interested in harnessing the potential of LLMs responsibly.

Part 1: Understanding the Landscape

The book starts by unpacking the inner workings of LLMs and explores how these models can be misused to generate harmful content or leak sensitive data. We delve into the concept of LLM bias, highlighting how the data used to train these models can influence their outputs. Through real-world scenarios and case studies, the book emphasizes the importance of proactive security measures to mitigate these risks.

Part 2: Building Secure LLM Applications

The core of the book focuses on securing LLM applications throughout their development lifecycle. We explore the Secure Development Lifecycle (SDLC) for LLMs, emphasizing secure data acquisition, robust model testing techniques, and continuous monitoring strategies. The book delves into MLOps security practices, highlighting techniques for securing model repositories, implementing anomaly detection, and ensuring the trustworthiness of LLM models.

Part 3: Governance and the Future of LLM Security

With the rise of LLMs, legal and ethical considerations come to the forefront. The book explores data privacy regulations and how to ensure responsible AI development practices. We discuss the importance of explainability and transparency in LLM decision-making for building trust and addressing potential biases.

The LLM Security Handbook