Geometrical Foundations of Asymptotic Inference

ebook Wiley in Probability and Statistics

By Robert E. Kass

cover image of Geometrical Foundations of Asymptotic Inference

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
Differential geometry provides an aesthetically appealing and oftenrevealing view of statistical inference. Beginning with anelementary treatment of one-parameter statistical models and endingwith an overview of recent developments, this is the first book toprovide an introduction to the subject that is largely accessibleto readers not already familiar with differential geometry. It alsogives a streamlined entry into the field to readers with richermathematical backgrounds. Much space is devoted to curvedexponential families, which are of interest not only because theymay be studied geometrically but also because they are analyticallyconvenient, so that results may be derived rigorously. In addition,several appendices provide useful mathematical material on basicconcepts in differential geometry. Topics covered include thefollowing:
* Basic properties of curved exponential families
* Elements of second-order, asymptotic theory
* The Fisher-Efron-Amari theory of information loss and recovery
* Jeffreys-Rao information-metric Riemannian geometry
* Curvature measures of nonlinearity
* Geometrically motivated diagnostics for exponential familyregression
* Geometrical theory of divergence functions
* A classification of and introduction to additional work in thefield
Geometrical Foundations of Asymptotic Inference