Quase todas as matrizes complexas são diagonalizáveis

ebook uma abordagem transdisciplinar

By Rubens Cardoso

cover image of Quase todas as matrizes complexas são diagonalizáveis

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
Nos primeiros cursos de Álgebra Linear, são apresentados aos estudantes exemplos de matrizes complexas que não são diagonalizáveis. Nesse contexto, é razoável indagar se a maioria das matrizes complexas são diagonalizáveis. O presente livro se debruça nessa questão. Por meio da Topologia, faz-se uma prova da densidade do conjunto das matrizes complexas diagonalizáveis, utilizando o Teorema da Decomposição de Schur. No contexto da medida e da integral de Lebesgue, prova-se que o conjunto das matrizes complexas não diagonalizáveis tem medida nula. Na perspectiva da Álgebra, por meio da topologia de Zariski, dá-se uma demonstração da densidade do conjunto das matrizes complexas diagonalizáveis, usando somente polinômios. Discutem-se as interdependências entre os resultados obtidos por meio da Topologia, da Medida e da Álgebra. Fazem-se, também, considerações do problema das matrizes triangulares, da diagonalização de matrizes e o das matrizes invertíveis, no contexto dos números reais. Como aplicação da topologia de Zariski, demonstra-se o clássico Teorema de Cayley-Hamilton da Álgebra Linear. Esta obra contém, ainda, um apêndice dos enunciados dos principais resultados para uma construção da medida e da integral de Lebesgue em R^n e, mais geralmente, em espaços de Banach, para atender os anseios de leitores por uma leitura clara e sucinta.
Quase todas as matrizes complexas são diagonalizáveis