Theory of Np Spaces

ebook Frontiers in Mathematics

By Le Hai Khoi

cover image of Theory of Np Spaces

Sign up to save your library

With an OverDrive account, you can save your favorite libraries for at-a-glance information about availability. Find out more about OverDrive accounts.

   Not today

Find this title in Libby, the library reading app by OverDrive.

Download Libby on the App Store Download Libby on Google Play

Search for a digital library with this title

Title found at these libraries:

Library Name Distance
Loading...
This monograph provides a comprehensive study of a typical and novel function space, known as the $\mathcal{N}_p$ spaces. These spaces are Banach and Hilbert spaces of analytic functions on the open unit disk and open unit ball, and the authors also explore composition operators and weighted composition operators on these spaces. The book covers a significant portion of the recent research on these spaces, making it an invaluable resource for those delving into this rapidly developing area. The authors introduce various weighted spaces, including the classical Hardy space $H^2$, Bergman space $B^2$, and Dirichlet space $\mathcal{D}$. By offering generalized definitions for these spaces, readers are equipped to explore further classes of Banach spaces such as Bloch spaces $\mathcal{B}^p$ and Bergman-type spaces $A^p$. Additionally, the authors extend their analysis beyond the open unit disk $\mathbb{D}$ and open unit ball $\mathbb{B}$ by presenting families of entire functions in the complex plane $\mathbb{C}$ and in higher dimensions. The Theory of $\mathcal{N}_p$ Spaces is an ideal resource for researchers and PhD students studying spaces of analytic functions and operators within these spaces.
Theory of Np Spaces